

Wildfire Detection Code 586/ Jerry Miller

A Code R, Computing, Information and Communications Technology (CICT) Program funded project

Goals, Objectives, Benefits

- GOAL: Promote automation of NOAA
 NESDIS's (National Environmental Satellite, Data, and Information Service) fire detection procedures.
- OBJECTIVE: Mimic Fire Analysyts' fire/nonfire decision making process as well as sensor specific fire detection algorithms.
- BENEFIT: Allows NOAA to transition from a national to global fire product as urged by climate modelers.

- Accumulate GOES, AVHRR, MODIS sensor data for ~ 1 year.
- Extract neural network training sets from each set of imagery.
- Train 3 separate neural networks to recognize fire patterns using NOAA fire product as reference.

Approach (continued)

Spectral Bands provided by NOAA:

GOES: 0.62, 3.9, 10.7 µm

AVHRR: 0.63, 0.91, 3.7 μm

MODIS: 0.66, 0.86, 3.96 μm

- Investigate 3 different ways to characterize fires across 3 spectral channels:
 - instantaneous single pixel
 - single pixel time series
 - pixel array

Approach (continued)

Typical MODIS Spatial Fire Signature (intensity or brightness temperature scaled to 0 - 255)

CH1 (0.66 µm)				CH2 (0.86 µm)				CH22 (3.96 µm)												
70	65	65	73	74	71	66	139	156	155	125	133	135	145	46	51	48	35	35	38	48
81	76	80	68	67	61	63	151	143	141	129	129	137	142	41	38	35	41	43	51	50
74	75	74	75	75	61	62	146	143	143	136	129	145	142	46	41	34	20	42	53	52
63	71	80	81	79	66	63	144	146	128	127	128	138	142	52	21	3	0	21	51	51
62	69	77	78	77	69	59	148	144	138	124	125	134	145	51	36	4	28	43	49	56
69	75	69	78	77	67	72	140	145	147	123	123	138	131	41	42	50	48	41	49	42
85	82	65	69	67	72	79	129	136	148	141	144	146	136	28	35	47	47	49	43	37

Approach (continued)

147-10-1 MODIS, GOES or AVHRR FFBP NEURAL NETWORK

Band A

Inputs: 1 - 49

Band B

Inputs: 50 - 98

Band C

Inputs: 99 - 147

Results

ERROR MATRICES

SENSOR: MODIS

Reference Fire NonFire

2834 173 3007
(TP) (FP)
318 3103 3421
(FN) (TN)
3152 3276 6428

	2EI12	SENSOR: AVERR						
	R	Reference						
	Fire	NonFi	re					
	5500	479	5979					
a Fire	(TP)	(FP)	39/9					
	624	4336	4960					
Filed	(FN)	(TN)	טטפד					
Classified on Italian	6124	4815	10939					

CENICOD: AVAIDD

	PRODUCER'S ACCURACY	USER'S ACCURACY	OVERALL ACCURACY	PRODUCER'S ACCURACY	S USER'S ACCURACY	OVERALL ACCURACY
FIRE:	TP/(TP+FN) 89.9%	TP/(TP+FP) 94.2%	(TP+TN)/SAMPLES 92.3%	TP/(TP+FN) 89.8%	TP/(TP+FP) 91.9%	(TP+TN)/SAMPLES 89.9%
NONFIRE:	TN/(FP+TN) 94.7%	TN/(TN+FN) 90.7%		TN/(FP+TN) 90.0%	TN/(TN+FN) 87.4%	

Results (continued)

ERROR MATRICES

SENSOR: GOES WEST

Reference

SENSOR: GOES EAST

Reference

		Fire	NonFire	е
æ		4826	771	
Data	Fire	(TP)	(FP)	5597
ed		1451	6432	7883
ssifie	NonFire	(FN)	(TN)	7003
Class		6277	7203	13480

		Fire	NonFire	е
		7445	2304	
Data	Fire	(TP)	(FP)	9749
		1312	7191	0503
ssified	NonFire	(FN)	(TN)	8503
Clas		8757	9495	18252

	PRODUCER'S ACCURACY	USER'S ACCURACY	OVERALL ACCURACY	PRODUCER'S ACCURACY	USER'S ACCURACY	OVERALL ACCURACY
FIRE:	TP/(TP+FN) 76.8%	TP/(TP+FP) 86.2%	(TP+TN)/SAMPLES 83.5%	TP/(TP+FN) 85.01%	TP/(TP+FP) 76.3%	(TP+TN)/SAMPLES 80.1%
NONFIRE:	TN/(FP+TN) 89.2%	TN/(TN+FN) 81.5%		TN/(FP+TN) 75.7%	TN/(TN+FN) 84.5%	

Status

 Last SW module which scans imagery for possible fires and supplies 3-ch vectors for neural processing undergoing debugging.

Next Steps

 Awaiting Code T, Software, Intelligent Systems & Modeling (SISM) funding for 3rd year of Wildfire Detection Project.

 Wildfire prediction (spin-off) may be funded by a Code Y CAN.